Atomic-level characterization of the structural dynamics of proteins.
نویسندگان
چکیده
Molecular dynamics (MD) simulations are widely used to study protein motions at an atomic level of detail, but they have been limited to time scales shorter than those of many biologically critical conformational changes. We examined two fundamental processes in protein dynamics--protein folding and conformational change within the folded state--by means of extremely long all-atom MD simulations conducted on a special-purpose machine. Equilibrium simulations of a WW protein domain captured multiple folding and unfolding events that consistently follow a well-defined folding pathway; separate simulations of the protein's constituent substructures shed light on possible determinants of this pathway. A 1-millisecond simulation of the folded protein BPTI reveals a small number of structurally distinct conformational states whose reversible interconversion is slower than local relaxations within those states by a factor of more than 1000.
منابع مشابه
From coarse-grained to atomic-level characterization of protein dynamics: transition state for the folding of B domain of protein A.
Atomic-level molecular dynamics simulations are widely used for the characterization of the structural dynamics of proteins; however, they are limited to shorter time scales than the duration of most of the relevant biological processes. Properly designed coarse-grained models that trade atomic resolution for efficient sampling allow access to much longer time-scales. In-depth understanding of ...
متن کاملMorphological, structural and photoresponse characterization of ZnO nanostructure films deposited on plasma etched silicon substrates
ZnO nanostructure films were deposited by radio frequency (RF) magnetron sputtering on etched silicon (100) substrates using dry Ar/SF6 plasma, at two etching times of 5 min and 30 min, and on non etched silicon surface. Energy dispersive X-ray (EDX) technique was employed to investigate the elements contents for etched substrates as well as ZnO films, where it is found to be stoichiometric. Su...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملEffect of Aerobic Exercise with Blood Flow Restriction on Mitochondrial Dynamics Proteins of Human Skeletal Muscles
Background: Aerobic exercise with Blood Flow Restriction (BFR) plays an important role in skeletal muscle adaptation; however, the effects of this type of exercise on mitochondrial dynamics proteins are unclear. Objective: The purpose of this study was to investigate the effect of aerobic exercise with and without BFR on mitochondrial dynamics proteins of human skeletal muscles. Methods: Pa...
متن کاملToward a Unified Representation of Protein Structural Dynamics in Solution
An atomic resolution description of protein flexibility is essential for understanding the role that structural dynamics play in biological processes. Despite the unique dependence of nuclear magnetic resonance (NMR) to motional averaging on different time scales, NMR-based protein structure determination often ignores the presence of dynamics, representing rapidly exchanging conformational equ...
متن کاملMolecular Dynamics Simulations of Hsp90 with an Eye to Inhibitor Design
Proteins carry out their functions through interactions with different partners. Dynamic conformational switching among different structural sub-states favors the adaptation to the shapes of the different partners. Such conformational changes can be determined by diverse biochemical factors, such as ligand-binding. Atomic level investigations of the mechanisms that underlie functional dynamics ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 330 6002 شماره
صفحات -
تاریخ انتشار 2010